ASSESSMENT OF REFRACTIVE ERRORS IN SCHOOL GIRLS IN A RURAL SETTING

HIFZA NOOR LODHI¹, NAIMA KHALID², MADIHA AKRAM³, TASHFEEN IKRAM⁴, MUNIZA SAEED⁵, SADIA CHIRAGH⁶
¹,⁴ Rashid Latif Khan University Medical College, Lahore, ²,⁶ Al-Aleem Medical College, Lahore, ³ Avicenna Medical College, Lahore, ⁵ Fatima Jinnah Medical College, Lahore.

ABSTRACT

Background: Among children, undiagnosed refractive error is the second most common cause of curable blindness and the major cause of visual disability these days. Children often do not complain of visual problems and may not even be aware of their symptoms. Ophthalmic screening programs in school children are not only essential but are also valuable. School screening programs assist in early detection of amblyopia and its risk factors such as strabismus, refractive errors and media opacities.

Methods: A total of 155 schoolgirls between ages 5 to 18 years were included in the screening process at a Government Higher Secondary School in April 2019. The students were asked to fill in a self-devised questionnaire for a superficial ocular assessment. Next, visual acuity was measured with Snellen distant vision chart. Data was analyzed using IBM SPSS Version 23. Data was checked for normality of distribution by Shapiro-Wilk test. Frequency and percentages of refractive errors were determined. A p-value ≤ 0.05 was considered statistically significant.

Results: The frequency of girls having right eye error was more than those having it in left eye and the percentage of girls having failed visual acuity in either eye i.e VA<6/12 was 17.4%. Pearson Chi Squared test was applied to determine any relationship between categorical variables and it showed significance between reading from books, threading the needle 0.000 and parents wearing glasses. (p-value<0.05).

Conclusion: Awareness about causes of refractive errors must be prioritized. Annual screening should be made mandatory in schools of both urban as well as rural setting, health education programs, walks, seminars should be conducted in order to create awareness amongst the general masses, and last but not the least smartphone usage hours should be restricted in children in order to prevent them from the deleterious effects of this gadget.

key words: Refractive errors, Screen time, School girls.

How to cite this article: Lodhi HN, Khalid N, Akram M, Ikram T, Saeed M, Chiragh S. Assessment of refractive errors in school girls in a rural setting. Pak Postgrad Med J 2023;35(01): 12-15

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

DOI: https://doi.org/10.51642/ppmj.v35i01.520

Correspondence to: Hifza Noor Lodhi,
Associate Professor
Department of Physiology, Rashid Latif Khan University Medical College, Lahore, Pakistan
Email: noor.musa.burki@gmail.com

INTRODUCTION

Vision plays a pivotal role in the intellectual growth of a child. Visual impairment in children is a global problem these days and one of the major root causes of childhood morbidity. Most of these can either be easily prevented or treated through early detection. It is estimated that across the globe 1.5 million children are suffering from blindness and out of these almost one million are Asian.¹

Among children, undiagnosed refractive error is the second most common cause of curable blindness and the major cause of visual disability these days. Uncorrected refractive errors accounts for over 11.4% of the blindness in Pakistan. Most of the children with uncorrected refractive errors show no symptoms and hence screening helps in timely detection and appropriate intervention.² Compared to environmental factors; genetic factors may attribute to early development of refractive errors in children.³

Children often do not complain of visual problems and may not even be aware of their symptoms. They may
adjust to visual impairment by adopting certain strategies like shifting position in the classroom, moving articles closer and avoiding tasks that involve more visual concentration. Therefore, screening of children for early detection and intervention is strongly recommended so that they can have the best opportunities to learn and develop. Increasing refractive errors worldwide including Pakistan is due to increased screen time among school going children due to overuse of electronic devices and other gadgets like mobile phones. This problem has hit both rural and urban population equally. Rapid urbanization in rural areas may be attributed to higher prevalence of refractive errors and with greater access to electronic devices due to changes in social behavior and economic conditions, along with the easy availability of electricity which has encouraged children to become inactive. They remain indoors and become involved in activities like gaming on mobiles which cause more strain on eyes and are harmful. The recent societal shift to indoor activities is contributing to the myopia epidemic and is adversely affecting children’s eyes worldwide. It has been known for many years now that blue light emitted from these devices is phototoxic for the retina. However, the percentage transmission of blue light is age related and is higher in children than adults. Ophthalmic screening programs in school children are not only essential but are also valuable. School screening programs assist in early detection of amblyopia and its risk factors such as strabismus, refractive errors and media opacities. Refractive errors in children in Pakistan is a big public health problem that requires immediate collaborative efforts from diverse stakeholders including the health care providers, educationists and parents to manage this issue. The purpose of this study was to ascertain the prevalence of refractive errors and the associated factors in school-aged children (5 to 18 years old).

METHODS
A total of 155 schoolgirls between ages 5 to 18 years were included in the screening process at Government Primary and Secondary Girls School, Nankana Sahib in April 2019. The students were asked to fill a self-devised questionnaire for a superficial ocular assessment. Next, visual acuity was measured with Snellen distant vision chart. If uncorrected vision was less than 6/12 in either eye, the child was identified to have defective vision (Failed visual screening). Visual acuity categories were defined as normal vision (6/6 in both eyes), mild impairment in the better eye (> 6/12 to ≤ 6/9), moderate impairment in the better eye (> 6/12 to ≤ 6/12), and blindness (≤6/60 in both eyes). Children with vision less than 6/12 or those having other defects like squint, ptosis, amblyopia or red eye etc. were referred to Lahore General hospital for detailed ophthalmic examination.

Data was analyzed using IBM SPSS Version 23. Data was checked for normality of distribution by Shapiro-Wilk test. Frequency and percentages of refractive errors were determined. A p-value ≤ 0.05 was considered statistically significant.

RESULTS
The frequency of girls having right eye error was more than those having it in left eye and the percentage of girls having failed visual acuity in either eye i.e. VA<6/12 was 17.4% as shown in the table 1:

Table: 1 Frequency and Percentage of Visual Acuity of both eyes in the study population

<table>
<thead>
<tr>
<th>Visual acuity</th>
<th>Right Eye Frequency (%)</th>
<th>Left Eye Frequency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6/6</td>
<td>77(49.7)</td>
<td>83(53.5)</td>
</tr>
<tr>
<td>6/9</td>
<td>41(26.5)</td>
<td>35(22.6)</td>
</tr>
<tr>
<td>6/12</td>
<td>14(9)</td>
<td>13(8.4)</td>
</tr>
<tr>
<td>6/18</td>
<td>8(5.2)</td>
<td>14(9)</td>
</tr>
<tr>
<td>6/24</td>
<td>10(6.5)</td>
<td>5(3.2)</td>
</tr>
<tr>
<td>6/36</td>
<td>5(3.2)</td>
<td>5(3.2)</td>
</tr>
</tbody>
</table>

We asked all the girls that were screened to answer the following questions and recorded their answers on a questionnaire proforma.

Table: 2 Frequency and Percentage of Questions asked from the Study Population

<table>
<thead>
<tr>
<th>Question asked by the researcher</th>
<th>Refractive Error Frequency (%)</th>
<th>No Error Frequency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Difficulty seeing a car or bus number plate</td>
<td>60(38.7)</td>
<td>95(61)</td>
</tr>
<tr>
<td>Difficulty in looking at the board even when you are sitting near it</td>
<td>35(22.6)</td>
<td>120(77.4)</td>
</tr>
<tr>
<td>Difficulty in finding a pen or pencil that falls on the floor</td>
<td>21(13.5)</td>
<td>134(86.5)</td>
</tr>
<tr>
<td>Difficulty in threading a needle</td>
<td>80(51.6)</td>
<td>75(48.4)</td>
</tr>
<tr>
<td>Place book very near to the eyes while reading</td>
<td>66(42.6)</td>
<td>89(57.4)</td>
</tr>
<tr>
<td>Need to go near the board to see what is written on it</td>
<td>63(40.6)</td>
<td>92(59.4)</td>
</tr>
<tr>
<td>Difficulty in identifying colors</td>
<td>12(7.7)</td>
<td>143(92.3)</td>
</tr>
<tr>
<td>Need to blink many times to see the board clearly</td>
<td>87(56.1)</td>
<td>68(43.9)</td>
</tr>
<tr>
<td>Difficulty in going up or down the stairs</td>
<td>28(18.1)</td>
<td>127(81.9)</td>
</tr>
<tr>
<td>Difficulty in going home in the evening</td>
<td>67(43.2)</td>
<td>88(56.8)</td>
</tr>
<tr>
<td>Use mobile phone</td>
<td>100(64)</td>
<td>55(36.5)</td>
</tr>
</tbody>
</table>
The purpose of this study was to assess the prevalence and potential risk factors triggering refractive errors in school-aged girls in a rural setting. Our study revealed that out of a total of 155 students, 88 girls (56.8%) had reduced visual acuity. The maximum number of these girls were between age group 11-16 years with highest prevalence of reduced visual acuity of 6/9. According to our study, a large proportion of visual field defects can be ascribed to excessive mobile phone usage, with 64.5% of the girls being mobile phone users. Out of this percentage, 4.5% of the girls used mobile phone for more than 2 hours daily. This is in line with a study conducted in Japan which positively correlated smartphone usage with refractive error abnormality. The study reveals that excessive screen time elongates the axial length of the eyeball thus leading to pathological myopia. According to Dirani et al., deficit of enough outdoor activity is leading to the increase in digital screen time and is causing sedentary behavior in children. A similar study conducted in Delhi found a higher percentage of children with myopia studying in private schools than children enrolled in government schools. This sheer contrast is a reflection of the high-tech syllabi, indoor school activities and provision of gadgets to enhance psychomotor skills in children of private schools than children in government schools. However, Li et al. found no connection between screen dependence and visual abnormalities in children. On the other hand, our study on rural population unfolded “screen time” in school-aged girls with 56.1% of girls spending time on phone for 1-2 hrs. This clearly shows that now in our country trends are changing and contrary to our belief, children in rural setting also have access to electronic media. Our study also highlighted the fact that 49% of the girls with visual impairment had parents who also wore spectacles. Therefore, it must be kept in mind that external influences as well as genetics play a key role in predisposing children to myopia.

There are certain limitations. First, our population was confined to girls hence the results cannot be generalized to children at large. Secondly, the information collected was through a self-devised questionnaire, which might have jeopardized the true results.

CONCLUSION
Awareness about causes of refractive errors must be prioritized. Annual screening should be made mandatory in schools of both urban as well as rural setting, health education programs, walks, seminars should be conducted in order to create awareness amongst the general masses, and last but not the least smartphone usage hours should be restricted in children in order to prevent them from the deleterious effects of this gadget.

Ethical Approval: Submitted
Conflict of Interest: Authors declare no conflict of interest.
Funding Source: None

REFERENCES


AUTHOR’S CONTRIBUTIONS
HNL: Concept, manuscript writing, statistical analysis, data collection, editing
NK: Data collection, Editing and proof reading
MA: Data collection, Editing
TI: Editing and proof reading
MS, SC: Concept, data collection and supervision